Skip to content

Worked Example - NRMP: Proper Orthogonal Decomposition (POD) Analysis

This example demonstrates the application of Proper Orthogonal Decomposition (POD) to a synthetic spatio-temporal dataset. POD is a powerful technique for analysing multi-dimensional data, identifying dominant spatial patterns (modes) that capture the most significant variations in the data. It is particularly useful for reducing the dimensionality of complex datasets and extracting coherent structures.

Analysis and Figure

The figure below shows the results of applying POD to the synthetic spatio-temporal dataset.

Methods used:

  • Proper Orthogonal Decomposition (POD)
  • Welch's method (to analyze the frequency content of the temporal coefficients)

WaLSAtools version: 1.0

These particular analyses generate the figure below (Supplementary Figure S5 in Nature Reviews Methods Primers; copyrighted). For a full description of the datasets and the analyses performed, see the associated article. See the source code at the bottom of this page (or here on Github) for a complete analyses and the plotting routines used to generate this figure.

jpg

Figure Caption: POD analysis results. The first six spatial modes (130×130 pixels2 each), along with their temporal coefficients and Welch power spectra of the temporal coefficients.

Source code

© 2025 WaLSA Team - Shahin Jafarzadeh et al.

This notebook is part of the WaLSAtools package (v1.0), provided under the Apache License, Version 2.0.

You may use, modify, and distribute this notebook and its contents under the terms of the license.


Important Note on Figures: Figures generated using this notebook that are identical to or derivative of those published in:
Jafarzadeh, S., Jess, D. B., Stangalini, M. et al. 2025, Nature Reviews Methods Primers, in press,
are copyrighted by Nature Reviews Methods Primers. Any reuse of such figures requires explicit permission from the journal.

Figures that are newly created, modified, or unrelated to the published article may be used under the terms of the Apache License.


Disclaimer: This notebook and its code are provided "as is", without warranty of any kind, express or implied. Refer to the license for more details.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
import numpy as np
from astropy.io import fits
from WaLSAtools import WaLSAtools, WaLSA_save_pdf

# Load FITS data
data_dir = 'Synthetic_Data/'
hdul = fits.open(data_dir + 'NRMP_signal_3D.fits')
signal_3d = hdul[0].data  # 3D synthetic data
time = hdul[1].data # Time array, saved in the second HDU (Extension HDU 1)
hdul.close()

# Computed POD modes using WaLSAtools
pod_results = WaLSAtools(signal=signal_3d, time=time, method='pod', num_modes=10)

Starting POD analysis ....
Processing a 3D cube with shape (200, 130, 130).
POD analysis completed.
Top 10 frequencies and normalized power values:
[[0.1, 1.0], [0.15, 0.7], [0.25, 0.61], [0.2, 0.54], [0.3, 0.47], [0.5, 0.39], [0.35, 0.32], [0.4, 0.25], [0.45, 0.24], [0.55, 0.18]]
Total variance contribution of the first 10 modes: 96.01%

---- POD/SPOD Results Summary ----

input_data (ndarray, Shape: (200, 130, 130)): Original input data, mean subtracted (Shape: (Nt, Ny, Nx))
spatial_mode (ndarray, Shape: (200, 130, 130)): Reshaped spatial modes matching the dimensions of the input data (Shape: (Nmodes, Ny, Nx))
temporal_coefficient (ndarray, Shape: (200, 200)): Temporal coefficients associated with each spatial mode (Shape: (Nmodes, Nt))
eigenvalue (ndarray, Shape: (200,)): Eigenvalues corresponding to singular values squared (Shape: (Nmodes))
eigenvalue_contribution (ndarray, Shape: (200,)): Eigenvalue contribution of each mode (Shape: (Nmodes))
cumulative_eigenvalues (list, Shape: (10,)): Cumulative percentage of eigenvalues for the first "num_cumulative_modes" modes (Shape: (num_cumulative_modes))
combined_welch_psd (ndarray, Shape: (8193,)): Combined Welch power spectral density for the temporal coefficients of the firts "num_modes" modes (Shape: (Nf))
frequencies (ndarray, Shape: (8193,)): Frequencies identified in the Welch spectrum (Shape: (Nf))
combined_welch_significance (ndarray, Shape: (8193,)): Significance threshold of the combined Welch spectrum (Shape: (Nf,))
reconstructed (ndarray, Shape: (130, 130)): Reconstructed frame at the specified timestep using the top "num_modes" modes (Shape: (Ny, Nx))
sorted_frequencies (ndarray, Shape: (21,)): Frequencies identified in the Welch combined power spectrum (Shape: (Nfrequencies))
frequency_filtered_modes (ndarray, Shape: (200, 130, 130, 10)): Frequency-filtered spatial POD modes for the first "num_top_frequencies" frequencies (Shape: (Nt, Ny, Nx, num_top_frequencies))
frequency_filtered_modes_frequencies (ndarray, Shape: (10,)): Frequencies corresponding to the frequency-filtered modes (Shape: (num_top_frequencies))
SPOD_spatial_modes (NoneType, Shape: None): SPOD spatial modes if SPOD is used (Shape: (Nspod_modes, Ny, Nx))
SPOD_temporal_coefficients (NoneType, Shape: None): SPOD temporal coefficients if SPOD is used (Shape: (Nspod_modes, Nt))
p (ndarray, Shape: (16900, 200)): Left singular vectors (spatial modes) from SVD (Shape: (Nx, Nmodes))
s (ndarray, Shape: (200,)): Singular values from SVD (Shape: (Nmodes))
a (ndarray, Shape: (200, 200)): Right singular vectors (temporal coefficients) from SVD (Shape: (Nmodes, Nt))


1
2
spatial_modes = pod_results['spatial_mode']
temporal_coefficients = pod_results['temporal_coefficient']
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec 
from matplotlib.ticker import AutoMinorLocator
from scipy.signal import welch

# Setting global parameters
plt.rcParams.update({
    'font.size': 14,          # Global font size
    'axes.titlesize': 18,     # Title font size
    'axes.labelsize': 16,     # Axis label font size
    'xtick.labelsize': 12,    # X-axis tick label font size
    'ytick.labelsize': 12,    # Y-axis tick label font size
    'legend.fontsize': 14,    # Legend font size
    'figure.titlesize': 20,   # Figure title font size
    'axes.grid': False,       # Turn off grid by default
    'grid.alpha': 0.5,        # Grid transparency
    'grid.linestyle': '--',   # Grid line style
})

fig = plt.figure(figsize=(15, 19))  # Create a figure with specified size

# Create subplots with GridSpec
gs1 = gridspec.GridSpec(9, 3, height_ratios=[1, 0.5, -0.04, 0.5, 0.2, 1, 0.5, -0.04, 0.5], figure=fig, hspace=0.5, wspace=0.3)

# Plot each column of p as an image in a subplot
for m in range(3):  # First set of 3 modes
    ax_img = plt.subplot(gs1[0, m])
    ax_img.set_title(f'POD Mode ($P_{m+1}$)')
    img = ax_img.imshow(spatial_modes[m, :, :], cmap='jet', aspect='equal', origin='lower')
    colorbar = plt.colorbar(img, ax=ax_img, orientation='vertical', shrink=1.0)
    colorbar.outline.set_linewidth(1.5)
    ax_img.set_xticks([])  # Remove x ticks
    ax_img.set_yticks([])  # Remove y ticks
    for spine in ax_img.spines.values():
        spine.set_linewidth(1.5)

    ax_line = plt.subplot(gs1[1, m])
    ax_line.plot(time, temporal_coefficients[m, :], 'k')
    ax_line.set_title(f'Temporal Coefficient ($A_{m+1}$)')
    ax_line.set_xlabel('Time (s)')  # X label
    if m == 0:
        ax_line.set_ylabel('Amplitude')  # Y label
    ax_line.tick_params(axis='y', labelsize=8)  # Adjust y tick label size
    ax_line.grid(False)  # Turn off grid
    ax_line.xaxis.set_minor_locator(AutoMinorLocator(5))
    ax_line.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax_line.tick_params(axis='both', which='major', direction='out', length=8, width=1.5)
    ax_line.tick_params(axis='both', which='minor', direction='out', length=4, width=1.5)
    ax_line.tick_params(axis='both', labelsize=14)
    for spine in ax_line.spines.values():
        spine.set_linewidth(1.5)
    ax_line.set_xlim(0, 100)

    ax_welch = plt.subplot(gs1[3, m])
    f, px = welch(temporal_coefficients[m, :] - np.mean(temporal_coefficients[m, :]), nperseg=150, noverlap=25, nfft=2**14, fs=2)
    ax_welch.plot(f * 1000., px, 'k')
    ax_welch.set_title(f'Power Spectrum ($A_{m+1}$)')
    ax_welch.set_xlabel('Frequency (mHz)')  # X label
    if m == 0:
        ax_welch.set_ylabel('Power')  # Y label
    ax_welch.tick_params(axis='y', labelsize=8)  # Adjust y tick label size
    ax_welch.grid(False)  # Turn off grid
    ax_welch.xaxis.set_minor_locator(AutoMinorLocator(5))
    ax_welch.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax_welch.tick_params(axis='both', which='major', direction='out', length=8, width=1.5)
    ax_welch.tick_params(axis='both', which='minor', direction='out', length=4, width=1.5)
    ax_welch.tick_params(axis='both', labelsize=14)
    for spine in ax_welch.spines.values():
        spine.set_linewidth(1.5)
    ax_welch.set_xlim(0, 1000)

# Create a separate GridSpec for the spacing between the two sets
gs_space = gridspec.GridSpec(1, 1, top=0.98, bottom=0.95, hspace=0.5, wspace=0.5, figure=fig)

for m in range(3, 6):  # Second set of 3 modes
    row = m - 3
    col = m % 3
    ax_img = plt.subplot(gs1[5, col])
    ax_img.set_title(f'POD Mode ($P_{m+1}$)')
    img = ax_img.imshow(spatial_modes[m, :, :], cmap='jet', aspect='equal', origin='lower')
    colorbar = plt.colorbar(img, ax=ax_img, orientation='vertical', shrink=1.0)
    colorbar.outline.set_linewidth(1.5)
    ax_img.set_xticks([])  # Remove x ticks
    ax_img.set_yticks([])  # Remove y ticks
    for spine in ax_img.spines.values():
        spine.set_linewidth(1.5)

    ax_line = plt.subplot(gs1[6, col])
    ax_line.plot(time, temporal_coefficients[m, :], 'k')
    ax_line.set_title(f'Temporal Coefficient ($A_{m+1}$)')
    ax_line.set_xlabel('Time (s)')  # X label
    if m == 3:
        ax_line.set_ylabel('Amplitude')  # Y label
    ax_line.tick_params(axis='y', labelsize=8)  # Adjust y tick label size
    ax_line.grid(False)  # Turn off grid
    ax_line.xaxis.set_minor_locator(AutoMinorLocator(5))
    ax_line.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax_line.tick_params(axis='both', which='major', direction='out', length=8, width=1.5)
    ax_line.tick_params(axis='both', which='minor', direction='out', length=4, width=1.5)
    ax_line.tick_params(axis='both', labelsize=14)
    for spine in ax_line.spines.values():
        spine.set_linewidth(1.5)
    ax_line.set_xlim(0, 100)

    ax_welch = plt.subplot(gs1[8, col])
    f, px = welch(temporal_coefficients[m, :] - np.mean(temporal_coefficients[m, :]), nperseg=150, noverlap=25, nfft=2**14, fs=2)
    ax_welch.plot(f * 1000., px, 'k')
    ax_welch.set_title(f'Power Spectrum ($A_{m+1}$)')
    ax_welch.set_xlabel('Frequency (mHz)')  # X label
    if m == 3:
        ax_welch.set_ylabel('Power')  # Y label
    ax_welch.tick_params(axis='y', labelsize=8)  # Adjust y tick label size
    ax_welch.grid(False)  # Turn off grid
    ax_welch.xaxis.set_minor_locator(AutoMinorLocator(5))
    ax_welch.yaxis.set_minor_locator(AutoMinorLocator(5))
    ax_welch.tick_params(axis='both', which='major', direction='out', length=8, width=1.5)
    ax_welch.tick_params(axis='both', which='minor', direction='out', length=4, width=1.5)
    ax_welch.tick_params(axis='both', labelsize=14)
    for spine in ax_welch.spines.values():
        spine.set_linewidth(1.5)
    ax_welch.set_xlim(0, 1000)

# Save the figure as a PDF
pdf_path = 'Figures/FigS5_POD_analysis.pdf'
WaLSA_save_pdf(fig, pdf_path, color_mode='CMYK', dpi=300, bbox_inches='tight', pad_inches=0)

# Show the plot
plt.show()

GPL Ghostscript 10.04.0 (2024-09-18) Copyright (C) 2024 Artifex Software, Inc. All rights reserved. This software is supplied under the GNU AGPLv3 and comes with NO WARRANTY: see the file COPYING for details. Processing pages 1 through 1. Page 1 PDF saved in CMYK format as 'Figures/FigS5_POD_analysis.pdf'

png