Skip to content

Worked Example - NRMP: Power Spectra

This example demonstrates the application of various spectral analysis techniques to a synthetic 1D signal constructed with predefined frequencies and amplitudes. The signal includes a range of oscillatory components with different characteristics, including:

  • Dominant oscillations: Five dominant frequencies (5, 12, 15, 18, and 25 Hz) with varying amplitudes.
  • Transient oscillation: A short-lived oscillation with a frequency of 2 Hz.
  • Weak oscillation: A low-amplitude oscillation with a frequency of 33 Hz.
  • Quasi-periodic oscillation: An oscillation with a frequency of 10 Hz and a time-varying amplitude.
  • Noise: Random noise added to the signal.

By analysing this synthetic signal with different methods, we can evaluate their ability to accurately identify and characterise these diverse oscillatory components. This provides valuable insights into the strengths and limitations of each technique, guiding the selection of appropriate methods for analysing real-world data. For a comprehensive discussion of the analysis and results, please refer to the associated article in Nature Reviews Methods Primers.

Analysis and Figure

The figure below presents a comparative analysis of various wave analysis methods applied to the synthetic 1D signal. The signal was pre-processed by detrending (to remove any linear trends) and apodized (to reduce edge effects) using a Tukey window.

Methods used:

  • Fast Fourier Transform (FFT)
  • Lomb-Scargle Periodogram
  • Welch's Method
  • Wavelet Transform (with Morlet, Paul, and Mexican Hat wavelets)
  • Global Wavelet Spectrum (GWS)
  • Refined Global Wavelet Spectrum (RGWS)
  • Hilbert-Huang Transform (HHT) with Empirical Mode Decomposition (EMD) and Ensemble EMD (EEMD)

WaLSAtools version: 1.0

These particular analyses generate the figure below (Figure 3 in Nature Reviews Methods Primers; copyrighted). For a full description of the datasets and the analyses performed, see the associated article. See the source code at the bottom of this page (or here on Github) for a complete analyses and the plotting routines used to generate this figure.

jpg

Figure Caption: Performance of diverse analysis methods on a synthetic 1D time series. (a) The detrended and apodized signal. (b) The unevenly sampled signal. (c) The FFT power spectrum. (d) The Lomb-Scargle periodogram. (e) The global wavelet spectrum (GWS) for the Morlet, Mexican Hat, and Paul wavelets. (f) The refined global wavelet spectrum (RGWS) for the Morlet, Mexican Hat, and Paul wavelets. (g) The HHT spectrum using EMD. (h) The FFT power spectra of the individual IMFs extracted by EMD. (i) The HHT spectrum using EEMD. (j) The FFT power spectra of the individual IMFs extracted by EEMD. (k) The Welch power spectrum. (l)-(n) The wavelet power spectra for the Morlet, Mexican Hat, and Paul wavelets, respectively. All powers are normalized to their maximum value and shown in percentages, with panels (c), (d), (h), and (j) zoomed in on a smaller power range for better visibility of smaller peaks. The 95% confidence levels are indicated by dot-dashed curves for 1D power spectra and solid black contours for wavelet spectra. Vertical lines above each 1D spectrum mark the frequency resolution. Green vertical (or horizontal) lines on the frequency axes indicate the predefined frequencies used to construct the synthetic signal.

Source code

© 2025 WaLSA Team - Shahin Jafarzadeh et al.

This notebook is part of the WaLSAtools package (v1.0), provided under the Apache License, Version 2.0.

You may use, modify, and distribute this notebook and its contents under the terms of the license.


Important Note on Figures: Figures generated using this notebook that are identical to or derivative of those published in:
Jafarzadeh, S., Jess, D. B., Stangalini, M. et al. 2025, Nature Reviews Methods Primers, in press,
are copyrighted by Nature Reviews Methods Primers. Any reuse of such figures requires explicit permission from the journal.

Figures that are newly created, modified, or unrelated to the published article may be used under the terms of the Apache License.


Disclaimer: This notebook and its code are provided "as is", without warranty of any kind, express or implied. Refer to the license for more details.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
from astropy.io import fits
from WaLSAtools import WaLSAtools, walsa_detrend_apod
import warnings
#--------------------------------------------------------------------------

warnings.filterwarnings('ignore', category=RuntimeWarning)

# Load the synthetic signal from the FITS file
data_dir= 'Synthetic_Data/'
file_path = data_dir + 'NRMP_signal_1D.fits'
hdul = fits.open(file_path)
signal = hdul[0].data  # 1D synthetic signal data
time = hdul[1].data  # Time array saved in the second HDU (Extension HDU 1)
hdul.close()

# Sampling rate and duration of the data
sampling_rate = 100  # Hz
duration = 10        # seconds

#--------------------------------------------------------------------------
# Create unevenly sampled data by removing gaps from the signal
# Define gaps' sizes and start indices
gap_sizes = [17, 42, 95, 46]  # Sizes of gaps
gap_starts = [150, 200, 500, 800]  # Start indices for gaps
# Create initial set of indices
n_points = len(signal)
indices = np.arange(n_points)
# Remove gaps
for gap_start, gap_size in zip(gap_starts, gap_sizes):
    indices = indices[(indices < gap_start) | (indices >= gap_start + gap_size)]
# Reduce both time and signal arrays according to final indices
t_uneven = time[indices]
signal_uneven = signal[indices]
# Sort time and signal to maintain ascending order (although should already be in order)
sorted_indices = np.argsort(t_uneven)
t_uneven = t_uneven[sorted_indices]
signal_uneven = signal_uneven[sorted_indices]
#--------------------------------------------------------------------------
# FFT Analysis using WaLSAtools
fft_power, fft_freqs, fft_significance = WaLSAtools(signal=signal, time=time, method='fft', siglevel=0.95, apod=0.1)
# Normalize FFT power to its maximum value
fft_power_normalized = 100 * fft_power / np.max(fft_power)
fft_significance_normalized = 100 * fft_significance / np.max(fft_power)
#--------------------------------------------------------------------------
# Lomb-Scargle Analysis using WaLSAtools
ls_power, ls_freqs, ls_significance = WaLSAtools(signal=signal, time=time, method='lombscargle', siglevel=0.95, apod=0.1)
# Normalize Lomb-Scargle power to its maximum value
ls_power_normalized = 100 * ls_power / np.max(ls_power)
ls_significance_normalized = 100 * ls_significance / np.max(ls_power)
#--------------------------------------------------------------------------
# Wavelet Analysis using WaLSAtools - Morlet
wavelet_power_morlet, wavelet_periods_morlet, wavelet_significance_morlet, coi_morlet, (global_power_morlet, global_conf_morlet), (rgws_morlet_periods, rgws_morlet_power) = WaLSAtools(
    signal=signal, time=time, method='wavelet', siglevel=0.95, apod=0.1, mother='morlet', GWS=True, RGWS=True
)
#--------------------------------------------------------------------------
# Wavelet Analysis using WaLSAtools - DOG (Mexican Hat)
wavelet_power_dog, wavelet_periods_dog, wavelet_significance_dog, coi_dog, (global_power_dog, global_conf_dog), (rgws_dog_periods, rgws_dog_power) = WaLSAtools(
    signal=signal, time=time, method='wavelet', siglevel=0.95, apod=0.1, mother='dog', GWS=True, RGWS=True
)
#--------------------------------------------------------------------------
# Wavelet Analysis using WaLSAtools - Paul
wavelet_power_paul, wavelet_periods_paul, wavelet_significance_paul, coi_paul, (global_power_paul, global_conf_paul), (rgws_paul_periods, rgws_paul_power) = WaLSAtools(
    signal=signal, time=time, method='wavelet', siglevel=0.95, apod=0.1, mother='paul', GWS=True, RGWS=True
)
#--------------------------------------------------------------------------
# Welch Power Spectral Density Analysis using WaLSAtools
welch_psd, welch_freqs, welch_significance = WaLSAtools(signal=signal, time=time, method='welch', siglevel=0.95, nperseg=200, noverlap=20)
# Normalize Welch PSD to its maximum value
welch_psd_normalized = 100 * welch_psd / np.max(welch_psd)
welch_significance_normalized = 100 * welch_significance / np.max(welch_psd)
#--------------------------------------------------------------------------
# EMD & HHT Calculations using WaLSAtools
HHT_power_spectrum_EMD, HHT_significance_level_EMD, HHT_freq_bins_EMD, psd_spectra_fft_EMD, confidence_levels_fft_EMD, _, _, _ = WaLSAtools(
    signal=signal, time=time, method='emd', siglevel=0.95)
# Normalize power spectra to their maximum values
HHT_power_spectrum_EMD_normalized = 100 * HHT_power_spectrum_EMD / np.max(HHT_power_spectrum_EMD)
HHT_significance_level_EMD_normalized = 100 * HHT_significance_level_EMD / np.max(HHT_power_spectrum_EMD)
#--------------------------------------------------------------------------
# EEMD & HHT Calculations using WaLSAtools
HHT_power_spectrum_EEMD, HHT_significance_level_EEMD, HHT_freq_bins_EEMD, psd_spectra_fft_EEMD, confidence_levels_fft_EEMD, _, _, _ = WaLSAtools(
    signal=signal, time=time, method='emd', siglevel=0.95, EEMD=True)
# Normalize power spectra to their maximum values
HHT_power_spectrum_EEMD_normalized = 100 * HHT_power_spectrum_EEMD / np.max(HHT_power_spectrum_EEMD)
HHT_significance_level_EEMD_normalized = 100 * HHT_significance_level_EEMD / np.max(HHT_power_spectrum_EEMD)

Detrending and apodization complete.
FFT processed.
Detrending and apodization complete.
Lomb-Scargle processed.
Detrending and apodization complete.
Wavelet (morlet) processed.
Detrending and apodization complete.
Wavelet (dog) processed.
Detrending and apodization complete.
Wavelet (paul) processed.
Welch processed.
Detrending and apodization complete.
EMD processed.
Detrending and apodization complete.
EEMD processed.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt
from matplotlib import gridspec
from matplotlib.patches import Polygon
from matplotlib.ticker import AutoMinorLocator, FormatStrFormatter
from matplotlib.legend_handler import HandlerTuple
from mpl_toolkits.axes_grid1 import make_axes_locatable
from WaLSAtools import WaLSA_save_pdf
from matplotlib.colors import ListedColormap

#--------------------------------------------------------------------------
pre_defined_freq = [2,5,10,12,15,18,25,33] # Mark pre-defined frequencies

# Setting global parameters
plt.rcParams.update({
    'font.family': 'sans-serif',     # Use sans-serif fonts
    'font.sans-serif': 'Arial',   # Set Helvetica as the default sans-serif font
    'font.size': 19,          # Global font size
    'axes.titlesize': 19,     # Title font size
    'axes.labelsize': 17,     # Axis label font size
    'xtick.labelsize': 17,    # X-axis tick label font size
    'ytick.labelsize': 17,    # Y-axis tick label font size
    'legend.fontsize': 15,    # Legend font size
    'figure.titlesize': 19,   # Figure title font size
    'axes.grid': False,        # Turn on grid by default
    'grid.alpha': 0.5,        # Grid transparency
    'grid.linestyle': '--',   # Grid line style
    'font.weight': 'medium',      # Make all fonts bold
    'axes.titleweight': 'medium', # Make title font bold
    'axes.labelweight': 'medium' # Make axis labels bold
})

plt.rc('axes', linewidth=1.3)
plt.rc('lines', linewidth=1.1)

# Create a figure and a gridspec with customized layout
fig = plt.figure(figsize=(16, 15))
gs = gridspec.GridSpec(5, 3, height_ratios=[1, 1, 1, 1, 1], width_ratios=[1, 1, 1], figure=fig, wspace=0.4, hspace=0.8)

# Add the light gray background manually using Polygons
# Fill for first two columns (all rows)
polygon_coords_1 = [[0.0, 0.0], [0.64, 0.0], [0.64, 1.0], [0.0, 1.0]]  # Define the coordinates for the first region
background_poly_1 = Polygon(polygon_coords_1, closed=True, facecolor=(0.91, 0.91, 0.91), edgecolor=None, zorder=-1)
fig.add_artist(background_poly_1)
# Fill for bottom part of third column (for plot k)
polygon_coords_2 = [[0.64, 0.0], [1.0, 0.0], [1.0, 0.2], [0.64, 0.2]]  # Define the coordinates for the second region
background_poly_2 = Polygon(polygon_coords_2, closed=True, facecolor=(0.91, 0.91, 0.91), edgecolor=None, zorder=-1)
fig.add_artist(background_poly_2)


# Assign plots to their respective positions
axs = [
    fig.add_subplot(gs[0, 0]),  # (a)
    fig.add_subplot(gs[1, 0]),  # (b)
    fig.add_subplot(gs[2, 0]),  # (e)
    fig.add_subplot(gs[3, 0]),  # (g)
    fig.add_subplot(gs[4, 0]),  # (i)
    fig.add_subplot(gs[0, 1]),  # (c)
    fig.add_subplot(gs[1, 1]),  # (d)
    fig.add_subplot(gs[2, 1]),  # (f)
    fig.add_subplot(gs[3, 1]),  # (h)
    fig.add_subplot(gs[4, 1]),  # (j)
    fig.add_subplot(gs[4, 2]),  # (k)
]

# Create individual axes for the subplots l, m, and n using fig.add_axes()
# The list elements [left, bottom, width, height] are fractions of the figure size
ax_inset_l = fig.add_axes([0.725, 0.785, 0.21, 0.14])
ax_inset_m = fig.add_axes([0.725, 0.522, 0.21, 0.14])
ax_inset_n = fig.add_axes([0.725, 0.255, 0.21, 0.14])

# Set background color for all plots except (l), (m), and (n)
for ax in axs:
    if ax not in [ax_inset_l, ax_inset_m, ax_inset_n]:
        ax.set_facecolor((0.91, 0.91, 0.91))  # Light gray background

#--------------------------------------------------------------------------
# Plot the signal
apod_signal = walsa_detrend_apod(signal, apod=0.1, pxdetrend=2, silent=True)
# axs[0].plot(time, apod_signal * 10, color='#3071A7')
axs[0].plot(time, apod_signal * 10, color='DodgerBlue')
axs[0].set_title('(a) Detrended & apodized synthetic signal', pad=12, fontsize=18)
axs[0].set_xlabel('Time (s)')
axs[0].set_ylabel('DN (arb. unit)')
axs[0].set_xlim([0, 10])
# Set tick marks outside for all four axes
axs[0].tick_params(axis='both', which='both', direction='out', top=True, right=True)
# Custom tick intervals
axs[0].set_xticks(np.arange(0, 10, 2))
axs[0].set_yticks(np.arange(0, 80.01, 40))
# Custom tick sizes and thickness
axs[0].tick_params(axis='both', which='major', length=8, width=1.5)  # Major ticks
axs[0].tick_params(axis='both', which='minor', length=4, width=1.5)  # Minor ticks
# Set minor ticks
axs[0].xaxis.set_minor_locator(AutoMinorLocator(4))
axs[0].yaxis.set_minor_locator(AutoMinorLocator(5))
#--------------------------------------------------------------------------
# Plot the unevenly sampled signal
apod_signal_uneven  = walsa_detrend_apod(signal_uneven, apod=0.1, silent=True)
segment_start_idx = 0
for i in range(1, len(t_uneven)):
    if t_uneven[i] - t_uneven[i-1] > np.mean(np.diff(t_uneven)):
        axs[1].plot(t_uneven[segment_start_idx:i], apod_signal_uneven[segment_start_idx:i] * 10, color='DodgerBlue')
        segment_start_idx = i
axs[1].plot(t_uneven[segment_start_idx:], apod_signal_uneven[segment_start_idx:] * 10, color='DodgerBlue')
axs[1].set_title('(b) The synthetic signal with gaps', pad=12)
axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('DN (arb. unit)')
axs[1].set_xlim([0, 10])
# Set tick marks outside for all four axes
axs[1].tick_params(axis='both', which='both', direction='out', top=True, right=True)
# Custom tick intervals
axs[1].set_xticks(np.arange(0, 10, 2))
axs[1].set_yticks(np.arange(0, 80.01, 40))
# Custom tick sizes and thickness
axs[1].tick_params(axis='both', which='major', length=8, width=1.5)  # Major ticks
axs[1].tick_params(axis='both', which='minor', length=4, width=1.5)  # Minor ticks
# Set minor ticks
axs[1].xaxis.set_minor_locator(AutoMinorLocator(4))
axs[1].yaxis.set_minor_locator(AutoMinorLocator(5))
#--------------------------------------------------------------------------
# Plot FFT power spectrum (normalized)
for freqin in pre_defined_freq:
    axs[5].axvline(x=freqin, color='#239023', linewidth=0.5)
axs[5].plot(fft_freqs, fft_power_normalized, color='red')
axs[5].set_title('(c) FFT', pad=12)
axs[5].set_xlabel('Frequency (Hz)')
axs[5].set_ylabel('Power (%)')
axs[5].set_xlim([0, 36])
axs[5].set_ylim([0, 12])
# Plot the significance level as a line
significance_plot, = axs[5].plot(fft_freqs, fft_significance_normalized, linestyle='-.', color='black', label='95% confidence level', linewidth=0.7)
axs[5].legend(
    [(significance_plot,)],  # Use a tuple for the line element
    ['95% confidence level     '],  # Text label
    handler_map={tuple: HandlerTuple(ndivide=None)},  # Custom handler to place the line on the right
    loc='upper right',  # Adjust position as needed
    bbox_to_anchor=(1.0, 0.92),  # Adjust the (x, y) position of the legend
    frameon=False,  # No frame for the legend
    handletextpad=-12.85  # Adjust this value to move the line closer/farther from the text
)
# Set tick marks outside for all four axes
axs[5].tick_params(axis='both', which='both', direction='out', top=True, right=True)
# Custom tick intervals
axs[5].set_xticks(np.arange(0, 36, 5))  # X-axis tick interval every 4 units
axs[5].set_yticks(np.arange(0, 12, 5))  # Y-axis tick interval every 2 units
# Custom tick sizes and thickness
axs[5].tick_params(axis='both', which='major', length=8, width=1.5)  # Major ticks
axs[5].tick_params(axis='both', which='minor', length=4, width=1.5)    # Minor ticks
# Set the number of minor ticks (e.g., 4 minor ticks between major ticks)
axs[5].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[5].yaxis.set_minor_locator(AutoMinorLocator(5))
# Vertical lines at all FFT frequencies (to illustrate frequency resolution)
for freq in fft_freqs:
    axs[5].vlines(freq, ymin=10.5, ymax=12, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[5].hlines(10.5, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot Lomb-Scargle power spectrum (normalized)
for freqin in pre_defined_freq:
    axs[6].axvline(x=freqin, color='#32CD32', linewidth=0.7)
axs[6].plot(ls_freqs, ls_power_normalized, color='red')
axs[6].set_title('(d) Lomb-Scargle', pad=12)
axs[6].set_xlabel('Frequency (Hz)')
axs[6].set_ylabel('Power (%)')
axs[6].set_xlim([0, 36])
axs[6].set_ylim([0, 12])
# Plot the significance level as a line
axs[6].plot(ls_freqs, ls_significance_normalized, linestyle='-.', color='black', linewidth=0.5)
# Set tick marks outside for all four axes
axs[6].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[6].set_xticks(np.arange(0, 36, 5))
axs[6].set_yticks(np.arange(0, 12, 5))
axs[6].tick_params(axis='both', which='major', length=8, width=1.5)
axs[6].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[6].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[6].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in ls_freqs:
    axs[6].vlines(freq, ymin=10.5, ymax=12, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[6].hlines(10.5, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Load the RGB values from the IDL file, corresponding to IDL's "loadct, 20" color table
rgb_values = np.loadtxt('Color_Tables/idl_colormap_20_modified.txt')
# Normalize the RGB values to [0, 1] (matplotlib expects RGB values in this range)
rgb_values = rgb_values / 255.0
idl_colormap_20 = ListedColormap(rgb_values)
#--------------------------------------------------------------------------
# Plot Wavelet power spectrum - Morlet
colorbar_label = '(l) Power (%) | Morlet Wavelet'
ylabel='Period (s)'
xlabel='Time (s)'
cmap = plt.get_cmap(idl_colormap_20)
power = wavelet_power_morlet
power[power < 0] = 0
power = 100 * power / np.nanmax(power)
t = time
periods = wavelet_periods_morlet
coi = coi_morlet
sig_slevel = wavelet_significance_morlet
dt = 1 / sampling_rate
removespace = True
if removespace:
    max_period = np.max(coi)
    cutoff_index = np.argmax(periods > max_period)

    # Ensure cutoff_index is within bounds
    if cutoff_index > 0 and cutoff_index <= len(periods):
        power = power[:cutoff_index, :]
        periods = periods[:cutoff_index]
        sig_slevel = sig_slevel[:cutoff_index, :]

# Define levels from 0 to 100 for consistent color scaling
levels = np.linspace(0, 100, 100)  # Set levels directly from 0 to 100
# Plot the wavelet power spectrum
CS = ax_inset_l.contourf(t, periods, power, levels=levels, cmap=cmap, extend='neither')

# 95% significance contour
ax_inset_l.contour(t, periods, sig_slevel, levels=[1], colors='k', linewidths=[0.6])
# Cone-of-influence
ax_inset_l.plot(t, coi, '-k', lw=1.15)
ax_inset_l.fill(
    np.concatenate([t, t[-1:] + dt, t[-1:] + dt, t[:1] - dt, t[:1] - dt]),
    np.concatenate([coi, [1e-9], [np.max(periods)], [np.max(periods)], [1e-9]]),
    color='none', edgecolor='k', alpha=1, hatch='xx'
)
# Log scale for periods
ax_inset_l.set_ylim([np.min(periods), np.max(periods)])
ax_inset_l.set_yscale('log', base=10)
ax_inset_l.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
ax_inset_l.invert_yaxis()
# Set axis limits and labels
ax_inset_l.set_xlim([t.min(), t.max()])
ax_inset_l.set_ylabel(ylabel)
ax_inset_l.set_xlabel(xlabel)
ax_inset_l.tick_params(axis='both', which='both', direction='out', length=8, width=1.5, top=True, right=True)
# Custom tick intervals
ax_inset_l.set_xticks(np.arange(0, 10, 2))
# Custom tick sizes and thickness
ax_inset_l.tick_params(axis='both', which='major', length=8, width=1.5, right=True)  # Major ticks
ax_inset_l.tick_params(axis='both', which='minor', top=True, right=True, length=4, width=1.5)
# Set the number of minor ticks (e.g., 4 minor ticks between major ticks)
ax_inset_l.xaxis.set_minor_locator(AutoMinorLocator(4))
# Add a secondary y-axis for frequency in Hz
ax_freq = ax_inset_l.twinx()
min_frequency = 1 / np.max(periods)
max_frequency = 1 / np.min(periods)
ax_freq.set_yscale('log', base=10)
ax_freq.set_ylim([max_frequency, min_frequency])  # Adjust frequency range properly
ax_freq.yaxis.set_major_formatter(FormatStrFormatter('%.0f'))
ax_freq.invert_yaxis()
ax_freq.set_ylabel('Frequency (Hz)')
ax_freq.tick_params(axis='both', which='major', length=8, width=1.5)
ax_freq.tick_params(axis='both', which='minor', top=True, right=True, length=4, width=1.5)
# Create an inset color bar axis above the plot with a slightly reduced width
divider = make_axes_locatable(ax_inset_l)
cax = inset_axes(ax_inset_l, width="100%", height="5%", loc='upper center', borderpad=-1.4)
cbar = plt.colorbar(CS, cax=cax, orientation='horizontal')
# Move color bar label to the top of the bar
cbar.set_label(colorbar_label, labelpad=8)
cbar.ax.tick_params(direction='out', top=True, labeltop=True, bottom=False, labelbottom=False)
cbar.ax.xaxis.set_label_position('top')
# Adjust tick marks for the color bar
cbar.ax.tick_params(axis='x', which='major', length=6, width=1.2, direction='out', top=True, labeltop=True, bottom=False)
cbar.ax.tick_params(axis='x', which='minor', length=3, width=0.8, direction='out', top=True, bottom=False)
# Set colorbar ticks and labels
cbar.set_ticks([0, 20, 40, 60, 80, 100])
cbar.ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{int(x)}'))
# Set minor ticks
cbar.ax.xaxis.set_minor_locator(AutoMinorLocator(4)) 

# Add horizontal lines for pre-defined frequencies
for freqin in pre_defined_freq:
    ax_inset_l.axhline(y=1/freqin, color='#32CD32', linewidth=0.7)
#--------------------------------------------------------------------------
# Plot Wavelet power spectrum - DOG (Mexican Hat)
colorbar_label = '(m) Power (%) | Mexican-Hat Wavelet'
ylabel='Period (s)'
xlabel='Time (s)'
cmap = plt.get_cmap(idl_colormap_20)
power = wavelet_power_dog
power[power < 0] = 0
power = 100 * power / np.nanmax(power)
t = time
periods = wavelet_periods_dog
coi = coi_dog
sig_slevel = wavelet_significance_dog
dt = 1 / sampling_rate
removespace = True
if removespace:
    max_period = np.max(coi)
    cutoff_index = np.argmax(periods > max_period)

    # Ensure cutoff_index is within bounds
    if cutoff_index > 0 and cutoff_index <= len(periods):
        power = power[:cutoff_index, :]
        periods = periods[:cutoff_index]
        sig_slevel = sig_slevel[:cutoff_index, :]

# Define levels from 0 to 100 for consistent color scaling
levels = np.linspace(0, 100, 100)  # Set levels directly from 0 to 100
# Plot the wavelet power spectrum
CS = ax_inset_m.contourf(t, periods, power, levels=levels, cmap=cmap, extend='neither')

# 95% significance contour
ax_inset_m.contour(t, periods, sig_slevel, levels=[1], colors='k', linewidths=[0.6])
# Cone-of-influence
ax_inset_m.plot(t, coi, '-k', lw=1.15)
ax_inset_m.fill(
    np.concatenate([t, t[-1:] + dt, t[-1:] + dt, t[:1] - dt, t[:1] - dt]),
    np.concatenate([coi, [1e-9], [max_period], [max_period], [1e-9]]),
    color='none', edgecolor='k', alpha=1, hatch='xx'
)
# Log scale for periods
ax_inset_m.set_ylim([np.min(periods), max_period])
ax_inset_m.set_yscale('log', base=10)
ax_inset_m.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
ax_inset_m.invert_yaxis()
# Set axis limits and labels
ax_inset_m.set_xlim([t.min(), t.max()])
ax_inset_m.set_ylabel(ylabel)
ax_inset_m.set_xlabel(xlabel)
ax_inset_m.tick_params(axis='both', which='both', direction='out', length=8, width=1.5, top=True, right=True)
# Custom tick intervals
ax_inset_m.set_xticks(np.arange(0, 10, 2))
# Custom tick sizes and thickness
ax_inset_m.tick_params(axis='both', which='major', length=8, width=1.5, right=True)  # Major ticks
ax_inset_m.tick_params(axis='both', which='minor', top=True, right=True, length=4, width=1.5)
# Set the number of minor ticks (e.g., 4 minor ticks between major ticks)
ax_inset_m.xaxis.set_minor_locator(AutoMinorLocator(4))
# Add a secondary y-axis for frequency in Hz
ax_freq = ax_inset_m.twinx()
# Set limits for the frequency axis based on the `max_period` used for the period axis
min_frequency = 1 / max_period
max_frequency = 1 / np.min(periods)
ax_freq.set_yscale('log', base=10)
ax_freq.set_ylim([max_frequency, min_frequency])  # Adjust frequency range properly
ax_freq.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
ax_freq.invert_yaxis()
ax_freq.set_ylabel('Frequency (Hz)')
ax_freq.tick_params(axis='both', which='major', length=8, width=1.5)
ax_freq.tick_params(axis='both', which='minor', top=True, right=True, length=4, width=1.5)
# Create an inset color bar axis above the plot with a slightly reduced width
divider = make_axes_locatable(ax_inset_m)
cax = inset_axes(ax_inset_m, width="100%", height="5%", loc='upper center', borderpad=-1.4)
cbar = plt.colorbar(CS, cax=cax, orientation='horizontal')
# Move color bar label to the top of the bar
cbar.set_label(colorbar_label, labelpad=8)
cbar.ax.tick_params(direction='out', top=True, labeltop=True, bottom=False, labelbottom=False)
cbar.ax.xaxis.set_label_position('top')
# Adjust tick marks for the color bar
cbar.ax.tick_params(axis='x', which='major', length=6, width=1.2, direction='out', top=True, labeltop=True, bottom=False)
cbar.ax.tick_params(axis='x', which='minor', length=3, width=0.8, direction='out', top=True, bottom=False)
# Set colorbar ticks and labels
cbar.set_ticks([0, 20, 40, 60, 80, 100])
cbar.ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{int(x)}'))
# Set minor ticks
cbar.ax.xaxis.set_minor_locator(AutoMinorLocator(4)) 

for freqin in pre_defined_freq:
    ax_inset_m.axhline(y=1/freqin, color='#32CD32', linewidth=0.7)
#--------------------------------------------------------------------------
# Plot Wavelet power spectrum - Paul
colorbar_label = '(n) Power (%) | Paul Wavelet'
ylabel='Period (s)'
xlabel='Time (s)'
cmap = plt.get_cmap(idl_colormap_20)
power = wavelet_power_paul
power[power < 0] = 0
power = 100 * power / np.nanmax(power)
t = time
periods = wavelet_periods_paul
coi = coi_paul
sig_slevel = wavelet_significance_paul
dt = 1 / sampling_rate
removespace = True
if removespace:
    max_period = np.max(coi)
    cutoff_index = np.argmax(periods > max_period)

    # Ensure cutoff_index is within bounds
    if cutoff_index > 0 and cutoff_index <= len(periods):
        power = power[:cutoff_index, :]
        periods = periods[:cutoff_index]
        sig_slevel = sig_slevel[:cutoff_index, :]

# Define levels from 0 to 100 for consistent color scaling
levels = np.linspace(0, 100, 100)  # Set levels directly from 0 to 100
# Plot the wavelet power spectrum
CS = ax_inset_n.contourf(t, periods, power, levels=levels, cmap=cmap, extend='neither')

# 95% significance contour
ax_inset_n.contour(t, periods, sig_slevel, levels=[1], colors='k', linewidths=[0.6])
# Plot cone-of-influence (CoI)
ax_inset_n.plot(t, coi, '-k', lw=1.15)
ax_inset_n.fill(
    np.concatenate([t, t[-1:] + dt, t[-1:] + dt, t[:1] - dt, t[:1] - dt]),
    np.concatenate([coi, [1e-9], [max_period], [max_period], [1e-9]]),
    color='none', edgecolor='k', alpha=1, hatch='xx'
)
# Log scale for periods
ax_inset_n.set_ylim([np.min(periods), max_period])
ax_inset_n.set_yscale('log', base=10)
ax_inset_n.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
ax_inset_n.invert_yaxis()
# Set axis limits and labels
ax_inset_n.set_xlim([t.min(), t.max()])
ax_inset_n.set_ylabel(ylabel)
ax_inset_n.set_xlabel(xlabel)
ax_inset_n.tick_params(axis='both', which='both', direction='out', length=8, width=1.5, top=True, right=True)
# Custom tick intervals
ax_inset_n.set_xticks(np.arange(0, 10, 2))
# Custom tick sizes and thickness
ax_inset_n.tick_params(axis='both', which='major', length=8, width=1.5, right=True)  # Major ticks
ax_inset_n.tick_params(axis='both', which='minor', top=True, right=True, length=4, width=1.5)
# Set the number of minor ticks (e.g., 4 minor ticks between major ticks)
ax_inset_n.xaxis.set_minor_locator(AutoMinorLocator(4))
# Add a secondary y-axis for frequency in Hz
ax_freq = ax_inset_n.twinx()
# Set limits for the frequency axis based on the `max_period` used for the period axis
min_frequency = 1 / max_period
max_frequency = 1 / np.min(periods)
ax_freq.set_yscale('log', base=10)
ax_freq.set_ylim([max_frequency, min_frequency])  # Adjust frequency range properly
ax_freq.yaxis.set_major_formatter(FormatStrFormatter('%.0f'))
ax_freq.invert_yaxis()
ax_freq.set_ylabel('Frequency (Hz)')
ax_freq.tick_params(axis='both', which='major', length=8, width=1.5)
ax_freq.tick_params(axis='both', which='minor', top=True, right=True, length=4, width=1.5)
# Create an inset color bar axis above the plot with a slightly reduced width
divider = make_axes_locatable(ax_inset_n)
cax = inset_axes(ax_inset_n, width="100%", height="5%", loc='upper center', borderpad=-1.4)
cbar = plt.colorbar(CS, cax=cax, orientation='horizontal')
# Move color bar label to the top of the bar
cbar.set_label(colorbar_label, labelpad=8)
cbar.ax.tick_params(direction='out', top=True, labeltop=True, bottom=False, labelbottom=False)
cbar.ax.xaxis.set_label_position('top')
# Adjust tick marks for the color bar
cbar.ax.tick_params(axis='x', which='major', length=6, width=1.2, direction='out', top=True, labeltop=True, bottom=False)
cbar.ax.tick_params(axis='x', which='minor', length=3, width=0.8, direction='out', top=True, bottom=False)
# Set colorbar ticks and labels
cbar.set_ticks([0, 20, 40, 60, 80, 100])
cbar.ax.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{int(x)}'))
# Set minor ticks
cbar.ax.xaxis.set_minor_locator(AutoMinorLocator(4)) 

for freqin in pre_defined_freq:
    ax_inset_n.axhline(y=1/freqin, color='#32CD32', linewidth=0.7)
#--------------------------------------------------------------------------
# Plot Global Wavelet Spectra (GWS)
for freqin in pre_defined_freq:
    axs[2].axvline(x=freqin, color='#32CD32', linewidth=0.7)
axs[2].plot(1 / wavelet_periods_morlet, 100 * global_power_morlet / np.max(global_power_morlet), 'g-', label='Morlet')
axs[2].plot(1 / wavelet_periods_dog, 100 * global_power_dog / np.max(global_power_dog), 'r-', label='Mexican Hat')
axs[2].plot(1 / wavelet_periods_paul, 100 * global_power_paul / np.max(global_power_paul), 'b-', label='Paul')
axs[2].plot(1 / wavelet_periods_morlet, 100 * global_conf_morlet / np.max(global_power_morlet), 'g-.')
axs[2].plot(1 / wavelet_periods_dog, 100 * global_conf_dog / np.max(global_power_dog), 'r-.')
axs[2].plot(1 / wavelet_periods_paul, 100 * global_conf_paul / np.max(global_power_paul), 'b-.')
axs[2].set_title('(e) GWS', pad=12)
axs[2].set_xlabel('Frequency (Hz)')
axs[2].set_ylabel('Power (%)')
axs[2].set_xlim([0, 36])
axs[2].set_ylim([0, 119])
# axs[2].legend(
#     loc='upper right', bbox_to_anchor=(1.0, 0.92), frameon=False,
#     handletextpad=-6.5
# )

# Add custom labels manually to the plot .... to align the labels to the right
handles, labels = axs[2].get_legend_handles_labels()
# Define the vertical offset for each legend item
offset = 0.15
for i, (handle, label) in enumerate(zip(handles, labels)):
    # Add the colored line
    axs[2].plot(
        [0.9, 0.97],  # x coordinates (start and end of the line)
        [0.78 - offset * i, 0.78 - offset * i],  # y coordinates (constant to make it horizontal)
        transform=axs[2].transAxes,
        color=handle.get_color(),  # Use the color from the original handle
        linestyle=handle.get_linestyle(),  # Use the linestyle from the original handle
        linewidth=handle.get_linewidth(),  # Use the linewidth from the original handle
    )

    # Add the label text
    axs[2].text(
        0.885, 0.78 - offset * i,  # Adjust x and y positions as needed
        label,
        transform=axs[2].transAxes,
        ha='right', va='center', fontsize=15,  # Align the text to the right
    )

# Set tick marks outside for all four axes
axs[2].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[2].set_xticks(np.arange(0, 36, 5))
axs[2].set_yticks(np.arange(0, 119, 30))
axs[2].tick_params(axis='both', which='major', length=8, width=1.5)
axs[2].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[2].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[2].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in 1 / wavelet_periods_morlet:
    axs[2].vlines(freq, ymin=105, ymax=119, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[2].hlines(105, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot Refined Global Wavelet Spectra (RGWS)
for freqin in pre_defined_freq:
    axs[7].axvline(x=freqin, color='#32CD32', linewidth=0.7)
axs[7].plot(1 / rgws_morlet_periods, 100 * rgws_morlet_power / np.max(rgws_morlet_power), 'g-')
axs[7].plot(1 / rgws_dog_periods, 100 * rgws_dog_power / np.max(rgws_dog_power), 'r-')
axs[7].plot(1 / rgws_paul_periods, 100 * rgws_paul_power / np.max(rgws_paul_power), 'b-')
axs[7].set_title('(f) RGWS', pad=12)
axs[7].set_xlabel('Frequency (Hz)')
axs[7].set_ylabel('Power (%)')
axs[7].set_xlim([0, 36])
axs[7].set_ylim([0, 119])
# Set tick marks outside for all four axes
axs[7].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[7].set_xticks(np.arange(0, 36, 5))
axs[7].set_yticks(np.arange(0, 119, 30))
axs[7].tick_params(axis='both', which='major', length=8, width=1.5)
axs[7].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[7].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[7].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in 1 / rgws_morlet_periods:
    axs[7].vlines(freq, ymin=105, ymax=119, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[7].hlines(105, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot Welch power spectrum (normalized)
for freqin in pre_defined_freq:
    axs[10].axvline(x=freqin, color='#32CD32', linewidth=0.7)
axs[10].plot(welch_freqs, welch_psd_normalized, color='red')
axs[10].set_title('(k) Welch', pad=12)
axs[10].set_xlabel('Frequency (Hz)')
axs[10].set_ylabel('Power (%)')
axs[10].set_xlim([0, 36])
axs[10].set_ylim([0, 119])
# Plot the significance level as a line
axs[10].plot(welch_freqs, welch_significance_normalized, linestyle='-.', color='black')
# Set tick marks outside for all four axes
axs[10].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[10].set_xticks(np.arange(0, 36, 5))
axs[10].set_yticks(np.arange(0, 119, 30))
axs[10].tick_params(axis='both', which='major', length=8, width=1.5)
axs[10].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[10].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[10].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in welch_freqs:
    axs[10].vlines(freq, ymin=105, ymax=119, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[10].hlines(105, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot HHT Marginal Spectrum (from EMD)
for freqin in pre_defined_freq:
    axs[3].axvline(x=freqin, color='#32CD32', linewidth=0.7)
axs[3].plot(HHT_freq_bins_EMD, HHT_power_spectrum_EMD_normalized, color='red')
axs[3].plot(HHT_freq_bins_EMD, HHT_significance_level_EMD_normalized, linestyle='-.', color='black')
axs[3].set_title('(g) HHT (EMD + Hilbert)', pad=12)
axs[3].set_xlabel('Frequency (Hz)')
axs[3].set_ylabel('Power (%)')
axs[3].set_xlim(0, 36)
axs[3].set_ylim(0, 119)
# Set tick marks outside for all four axes
axs[3].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[3].set_xticks(np.arange(0, 36, 5))
axs[3].set_yticks(np.arange(0, 119, 30))
axs[3].tick_params(axis='both', which='major', length=8, width=1.5)
axs[3].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[3].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[3].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in HHT_freq_bins_EMD:
    axs[3].vlines(freq, ymin=105, ymax=119, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[3].hlines(105, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot FFT Spectra of IMFs (from EMD)
colors = ['dodgerblue', 'orange', 'darkgreen', 'red', 'gray', 'orchid', 'limegreen', 'cyan', 'blue', 'magenta']
for freqin in pre_defined_freq:
    axs[8].axvline(x=freqin, color='#32CD32', linewidth=0.7)
for i, ((xf, psd), confidence_level) in enumerate(zip(psd_spectra_fft_EMD, confidence_levels_fft_EMD)):
    if i == 0:
        psd0 = psd
    psd_normalized = 100 * psd / np.max(psd0)
    confidence_level_normalized = 100 * confidence_level / np.max(psd0)
    axs[8].plot(xf, psd_normalized, label=f'IMF {i+1}', color=colors[i])
    axs[8].plot(xf, confidence_level_normalized, linestyle='--', color=colors[i])
axs[8].set_title('(h) FFT of IMFs (EMD)', pad=12)
axs[8].set_xlabel('Frequency (Hz)')
axs[8].set_ylabel('Power (%)')
axs[8].set_xlim(0, 36)
axs[8].set_ylim(0, 12)
# Set tick marks outside for all four axes
axs[8].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[8].set_xticks(np.arange(0, 36, 5))
axs[8].set_yticks(np.arange(0, 12, 5))
axs[8].tick_params(axis='both', which='major', length=8, width=1.5)
axs[8].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[8].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[8].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in xf:
    axs[8].vlines(freq, ymin=10.5, ymax=12, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[8].hlines(10.5, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot HHT Marginal Spectrum (from EEMD)
for freqin in pre_defined_freq:
    axs[4].axvline(x=freqin, color='#32CD32', linewidth=0.7)
axs[4].plot(HHT_freq_bins_EEMD, HHT_power_spectrum_EEMD_normalized, color='red')
axs[4].plot(HHT_freq_bins_EEMD, HHT_significance_level_EEMD_normalized, linestyle='-.', color='black')
axs[4].set_title('(i) HHT (EEMD + Hilbert)', pad=12)
axs[4].set_xlabel('Frequency (Hz)')
axs[4].set_ylabel('Power (%)')
axs[4].set_xlim(0, 36)
axs[4].set_ylim(0, 119)
# Set tick marks outside for all four axes
axs[4].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[4].set_xticks(np.arange(0, 36, 5))
axs[4].set_yticks(np.arange(0, 119, 30))
axs[4].tick_params(axis='both', which='major', length=8, width=1.5)
axs[4].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[4].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[4].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in HHT_freq_bins_EEMD:
    axs[4].vlines(freq, ymin=105, ymax=119, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[4].hlines(105, xmin=0, xmax=36, color='black', linewidth=0.4)
#--------------------------------------------------------------------------
# Plot FFT Spectra of IMFs (from EEMD)
for freqin in pre_defined_freq:
    axs[9].axvline(x=freqin, color='#32CD32', linewidth=0.7)
for i, ((xf, psd), confidence_level) in enumerate(zip(psd_spectra_fft_EEMD, confidence_levels_fft_EEMD)):
    if i == 0:
        psd0 = psd
    psd_normalized = 100 * psd / np.max(psd0)
    confidence_level_normalized = 100 * confidence_level / np.max(psd0)
    axs[9].plot(xf, psd_normalized, label=f'IMF {i+1}', color=colors[i])
    axs[9].plot(xf, confidence_level_normalized, linestyle='--', color=colors[i])
axs[9].set_title('(j) FFT of IMFs (EEMD)', pad=12)
axs[9].set_xlabel('Frequency (Hz)')
axs[9].set_ylabel('Power (%)')
axs[9].set_xlim(0, 36)
axs[9].set_ylim(0, 12)
# Set tick marks outside for all four axes
axs[9].tick_params(axis='both', which='both', direction='out', top=True, right=True)
axs[9].set_xticks(np.arange(0, 36, 5))
axs[9].set_yticks(np.arange(0, 12, 5))
axs[9].tick_params(axis='both', which='major', length=8, width=1.5)
axs[9].tick_params(axis='both', which='minor', length=4, width=1.5)
axs[9].xaxis.set_minor_locator(AutoMinorLocator(5))
axs[9].yaxis.set_minor_locator(AutoMinorLocator(5))
for freq in xf:
    axs[9].vlines(freq, ymin=10.5, ymax=12, color=(0.10, 0.10, 0.10), linewidth=0.4)
axs[9].hlines(10.5, xmin=0, xmax=36, color='black', linewidth=0.4)

#--------------------------------------------------------------------------
# Adjust overall layout
fig.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05, wspace=0.0, hspace=0.0)

# Save the figure as a single PDF
pdf_path = 'Figures/Fig3_power_spectra_1D_signal.pdf'
WaLSA_save_pdf(fig, pdf_path, color_mode='CMYK')

plt.show()

GPL Ghostscript 10.04.0 (2024-09-18)
Copyright (C) 2024 Artifex Software, Inc. All rights reserved.
This software is supplied under the GNU AGPLv3 and comes with NO WARRANTY:
see the file COPYING for details.
Processing pages 1 through 1.
Page 1
PDF saved in CMYK format as 'Figures/Fig3_power_spectra_1D_signal.pdf'

png